

Produktdatenblatt Filterelemente ERDH.. ZN,XN,XXN /TC, /EX

Version: 1.9.0 Verfasser: Manfred Loy Datum: 24.03.2020

Anwendungsgebiet

Filterelemente der Bauform ERDH mit den Filtrationsgraden ZN, XN und XXN in der Ausführung TC (Hochtemperatur und chemisch beständig) bzw. EX (wie TC, jedoch alle Komponenten elektrisch leitfähig verbunden und mit zusätzlichem Erdungsanschluss) bieten die Möglichkeit, unsere leistungsfähige, energie-effiziente und betriebssichere Filtrationstechnologie auch in domnick-hunter Filtergehäusen der Baureihe Oil-X Plus einzusetzen. Dabei empfehlen wir folgende Zuordnung bei den Filtrationsgraden:

	Heuro	domnick-hunter
Fein	ZN	AO, AR
Feinst	XN	AA, AAR
Superfeinst	XXN	AX

Merkmale

Filterelemente der Bauform ERDH mit den Filtrationsgraden ZN, XN, XXN bestehen aus einem plissierten Tiefenfiltermedium und einem getrennt davon liegenden Drainagemedium. Beide Funktionsschichten sind kompakt zwischen den beiden Edelstahl-Stützzylindern und somit vollständig im Filterelement integriert angeordnet.

Durch die Plissierung wird die effektive Filterfläche um ein vielfaches vergrößert, folglich erhöht sich die Schmutzaufnahmekapazität und somit die Standzeit. Der Strömungswiderstand und somit der vom Filterelement erzeugte Differenzdruck wird deutlich reduziert. Durch die Trennung der beiden für das Filterelement grundlegenden Funktionseinheiten Filtration und Drainage ist selbst bei Durchbruch einer Filterschicht zumindest die Funktion der verbleibenden Schicht noch gewährleistet. Um frühzeitige Durchbrüche zu vermeiden ist der plissierte Tiefenfilterzylinder zwei- bzw. mehrlagig ausgeführt und zusätzlich auf der Innen- und Außenseite mit einem ebenfalls plissierten Stützgewebe versehen. Sämtliche Medien sind innerhalb der beiden Edelstahl-Stützzylinder angeordnet, wodurch der Abriss oder Teileabriss einer für die Filtration relevanten Filterschicht unmöglich wird.

Alle bisher genannten Merkmale bieten ein Filterelement mit hoher Effizienz (hohe Abscheideleistung) bei hoher Wirtschaftlichkeit (geringer Differenzdruck) und maximaler Betriebssicherheit (integrierter Aufbau).

Seite 1 von 4

Produktdatenblatt Filterelemente ERDH.. ZN,XN,XXN /HT, /EX

Technische Änderungen vorbehalten

Stand 24.03.2020

Aktuellste Version unter www.fstweb.de

Grunddaten

Baugröße	Nominaler Volumenstrom (VN)*1	Max. Betriebsüberdruck	Min./Max. Betriebstemperatur	
ERDH145	522 m³/h (1,28)			
ERDH220	792 m³/h (1,39)		Dauerbelastung 2°C - 100°C	
ERDH330	1.188 m³/h (1,00)		Kurzzeitige Belastung 2°C - 120°C	
ERDH620	2.232 m³/h (1,34)		2 3 120 6	

^{*1 -} bezogen auf 1 bar(a) und 20°C bei 7 bar Betriebsüberdruck

Der in Klammern angegebene Faktor gibt das Verhältnis der Durchströmung des Filterelementes pro cm² Oberfläche im Vergleich zum Referenzelement EFST30 an

Reinheitsklassen nach ISO 8573-1

Verunreinigung	ZN	XN	XXN
Feststoffpartikel*2	Klasse 2	Klasse 1	Klasse 0-1
Feuchtegehalt			
Gesamtölgehalt*2 *3	Klasse 2	Klasse 1	Klasse 0-1

^{*2 -} typisches Ergebnis, unter der Annahme entsprechend geeigneter Eintrittskonzentrationen sowie Betriebs- und Randbedingungen

Korrekturfaktoren Volumenstrom

«F1» - Druck (in bar)

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0,125	0,25	0,38	0,50	0,63	0,75	0,88	1,00	1,13	1,25	1,38	1,50	1,63	1,75	1,88	2,00	2,13
25	50	75	100	125	150	175	200	225	250	275	300	325	350	375	400	>400
3,1	5,1	6,5	7,6	8,5	9,3	9,9	10,5	11,0	11,5	11,9	12,3	12,7	13,0	13,0	13,0	13,0

«F2» - Temperatur (in °C)

2	5	10	15	20	25	30	35	40	45	50	55	60	70	80	90	100
1,07	1,05	1,04	1,02	1,00	0,98	0,97	0,95	0,94	0,92	0,91	0,89	0,88	0,85	0,83	0,81	0,79

Berechnung der korrigierten Volumenströme

Tatsächlicher Volumenstrom VK	Nominal erforderlicher Volumenstrom VN _{min}
VK = VN x F1 x F2	VN _{min} = VK / F1 / F2

VK : Tatsächliche Volumenstromleistung umgerechnet auf Betriebsbedingungen

VN_{min}: Nominal erforderlicher Volumenstrom berechnet aus den Betriebsbedingungen und dem tatsächlichen Volumenstrom

^{*3 -} der Öldampfgehalt ist nicht berücksichtigt und kann die Reinheitsklasse herabsetzen

Produktdatenblatt Filterelemente ERDH.. ZN,XN,XXN /HT, /EX

Technische Änderungen vorbehalten

Stand 24.03.2020

Aktuellste Version unter www.fstweb.de

Wartungsregeln

Druckbereich	
0-4 bar	Filterelementwechsel einmal jährlich, spätestens bei einem Differenzdruck von 50 mbar
5-16 bar	Filterelementwechsel einmal jährlich, spätestens bei einem Differenzdruck von 350 mbar
17-50 bar	Filterelementwechsel einmal jährlich, spätestens bei einem Differenzdruck von 500 mbar
> 50 bar	Filterelementwechsel einmal jährlich, spätestens bei einem Differenzdruck von 750 mbar

Produktspezifische Kennwerte

Kennwert	ZN	XN	XXN
Differenzdruck trocken*4	30 mbar	40 mbar	80 mbar
Differenzdruck nass*4	125 mbar	140 mbar	190 mbar
Abscheidegrad trocken (nominal)	99,9999% (1μ)	99,9999% (0,01μ)	99,99999% (0,01μ)
Abscheidegrad (ISO 12500-3) *5	99,98% (0,3μ)	99,995% (0,3μ)	99,9995% (0,3μ)
Restölgehalt (nominal)	≤ 0,5 mg/m³	≤ 0,01 mg/m³	≤ 0,001 mg/m³
Restölgehalt (ISO 12500-1) *6		0,02 mg/m ³	

^{*4 -} gemessen bei 7 bar und nominalem Volumenstrom, Baugröße EFST30

Werkstoffe

Bauteil	
Tiefenfiltermedium	Glasfaser
Drainagemedium	PES (Polyester)
Stützgewebe Tiefenfiltermedium	Nylon
Verklebung	Ероху
Stützzylinder	Edelstahl 1.4301
Endkappen	Edelstahl 1.4301
Dichtwerkstoffe	Viton

^{*5 -} gemessen in Anlehnung an ISO 12500-3 bei 7 bar und nominalem Volumenstrom, Baugröße EFST30, MPPS - Most Penetrating Particle Size

^{*6 -} gemessen nach ISO 12500-1 am Beispiel der Baugröße EFST30, Prüfaerosol Öl mit der Viskosität 32 mm²/s, Beaufschlagung 10 mg/m³

Produktdatenblatt Filterelemente ERDH.. ZN,XN,XXN /HT, /EX

Technische Änderungen vorbehalten

Stand 24.03.2020

Aktuellste Version unter www.fstweb.de

Abmessungen

Baugröße	Höhe (Gesamthöhe)	Ø	Ø Eintritt (innen)
ERDH145	260 mm (270 mm)	72 mm	32 mm
ERDH220	330 mm (338 mm)	86 mm	52 mm
ERDH330	632 mm (640 mm)	86 mm	52 mm
ERDH620	638 mm (645 mm)	114 mm	68 mm

Einstufung nach Druckgeräterichtlinie 2014/68/EU (DGRL) für Fluidgruppe 2

Baugröße	Volumen	Kategorie
Alle Baugrößen	Filterelemente sind nicht Gegenstand	der Druckgeräterichtlinie 2014/68/EU

Sonstige Richtlinien

Baugröße	
Alle Baugrößen	